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ABSTRACT

A n*thod Is presented for solving certain syste~.s of generalized

Abel integral equations by constructing equ i valent singular Integral

equations and their corresponding Rlemann boundary value problems.

An application is then given to a class of simultaneous dual relations

of a type arising In bimedla fracture problems in elasticity . The

equations discussed in this paper general ize those considered in

an earlier paper of Lowengrub and Walton [3] .
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1. IntroductIon

In this paper we describe a method for solving systems of

generalized Abel integral equations of the type

x c~1(t~ )~ Ct )  1
a1 (x~) 

~ (x~-t~)~ 
dt + b2 (x~) 

~ (t~-x~)~~ 
dt f1 (x)

(1) O c x < l
1 B 1 (t

1’)q (t) dt x
b1 (x~) 

~ (tP~xP)
L
~) 

+ 
~~~ L (x P_tP)U2 

dt — f2(x )

Since only the cases p = 1 or p 2 occur In applications, we sha l l
restrict the subsequent discussion to those cases.

The equations (1) are a generalization of those analyzed In (3] for

which LI2 and = 

~2 ~ 
82 1 . That referenc. also Includes

a discussion of an application of such systems to problems In elasticity.

In particular , a method was presented in [3] for reducing a simultaneious

set of dual relations involving Hankel transforms to a simultaneous

system of fractional integral and differential operators. Under certain

conditions the systems obtained In that way were shown to be equivalent to one of

the systems of Abel type equations for which closed form solutions were

constructed in (3]. However, the conditions that must be imposed upon

such simultaneous dual relations to yield Abel systems wi thin the scope

of the techniques of (3] are very restrictive.

In con trast , the method presented here is applicable to a very
large class of simultaneous dual relations. Unfortunately this Is at the
expense of obtaining closed form solutions. What is achieved Is a

1~
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transformation of the dual relations to a system of singular integral

equations with Cauchy dominant singular part. Such systems have been

studied extensively. (See [2], (4).) For example, the Noether theorems

(4] answer the questions of existence and uniqueness of solutions to

such systems , and these systems are known to be equivalent to certain

Fredhola integra l equations of the second kind . Recently, equations

(1) wIth p = 1 have arisen in the study of certain bimed la fracture

problems for power law viscoelastic solids . This application will be

the subject of a future paper.

Very few theoretical results for simultaneous dual relations have

appeared in the literature . The method described In this paper provides

a means of pursuing such investigations and Is useful for obtaining

insight Into the nature of simultaneous dual relations . For example,

apply ing the Noether theorems to the associated singular integral

equations , yields conditions necessary for the existence of a unique

solution . We do not attempt to present a rigorous analysis of the dual

relations considered here . However , it should be stra ight forward,

albeit tedious , to do so by justifying our formal manipulations wi thin

the distributional framework employed in [6) and (7) or that developed

by Braaksma and Schuitman (1].

In Sections 2 and 3 we consider (1) for p = 1 and p - 2

respecitvely. Section 4 contains the appl ication to simultaneous

‘111 relations .
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2. First Abel System

In this section we consider the generalized Abel system (1) with

p — l .  It is assumed that

(2) ci1(t)

A
and 81( t) — B i *(t ) ( l _ t )  ~ I — 1,2

where aj*( t) and 81*(t) are continuously differentiable on (0,1]

and non-vanishing at the endpoints. It wi ll prove convenient to

introduce the following notation:

(3) v1’ mln(O ,v1) , x~’ — m in( O ,A 1),

-v ’
= ai(t)t ~ ( l—t )  ,

(4) 
—~~~~~

‘ — A ’
8~(t) t  ~ (~—t ) ~

- Al ’
(5) •1(t) = •1(t)t ~ ( 1— t )

x
14 ( $ 4 )  — I — dt

b (x-t)~~(6)
1

= / ~,— d t  ,
x (t-x)

x • (t)
(7) h1 (x) - J dt

o (x-t) 1

l + ( t )
(8) ki(x) f ~ dt ,

x (t-x) ~

N
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(9) R1 (z) — (z(l-z)) Y

and

1 1
(10) •i(Z ) [R1(z)Y f dt

0 (t-z) i

We seek solu tions ~1(t) , I — 1,2 such that

-
(11) •1(t) 

2 _________

(t(1-t)) ‘~l

where •1*t) is Holder continuous on [0,1) and ~ Is a positive ntather.

It follows that when a suitable branch Is chosen for the multivalued

func tion (R i(z)(t—z)~
’]

1 
, •1(z) is analytic In the complex plane

cut along (0,1] and satisfies the asymptotic estimates

— 0(1) as z

= 0(z—f_—) as z • 0

( 12) and

— O(( l~Z)
r ) as 2 • 1

We remark also that h1(0+) — k 1(1-) — 1~(~~)(0+) = k1(,1)0— ) — 0

and h 1(l-) , k1 (O+) , Ij (,i)( l_ )  and K1(~ 1) (0+) are all fInite .
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Let •1 (x ) d note the following limits:

l im
z•x

I
~
(Z)>O

O’x~I

• l i m
z+x

I
~
(z)<O

It is then readily verified that

Ie~~~s ‘(x)+. (x)l
(13) h 1 (x) 2Lj1IIT 

j  

R1(x )  and
(e 1 )

r
~ •1

’(x)+e ‘ •~~(x)(14 ) k 1(x )  — _ [ 21i1Ili 
R.(x)

(e 1)

From l ines (2) - (5) we observe that

sin p111 t h1(y)dy(15) •1(t) = 10 (t_y )’Li

sin ~11l 1 k1 (y)dy
(16) - -  f

t (y-t)~~ ’i

Noreover, from (15) we obtain

_ _ _ _ _ _  - a
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x
I ~~~ 

)( x ) = f ———‘—----__-

o (x- t)

x 1(t) (t)dt
= I —

o (x-t)~

sin u1ri x 1 (t)dt t h~(y)dy
- 

‘o (x- t)~ 
~o ( t )~~~i

sin u 11 * , x ~1 (t)dtI 

~o 
hi(y)dy ‘y (x~t)~1(t~,)

T
~~1

— sI fl Li ul x
( 17) - h 1 (x ) a1 (x ) I 

~ 
h 1 (y)K 1 1 (x ,y)dy

where

1 a1 (s(x— y)+y)dsK1 1 (x ,y) 1 ~o ( l_ s )~ 1 s

It should be observed that K1 1 (x,y) is continuous for 0 y x < 1

and Integrable on the triangle o < y < x < 1

Similarly, as a consequence of (16), we have

- 
s i n L i u l  1

(18) K1($1 ) ( x )  = k1 (x ) 81 (x )  + ______ - J k~(y) ~2 i
(x ,y)dy

x

where

1 ~1(s(y-x)+y)dsK2 1 (x ,y) 
~ (J 5)Lhi 151 Ui 

‘ 

~~~~~~I ~~~~~

and K2,1 (x ,y) is continuous for 0 < x c y < 1 and integrable on

0 x < y < l  .

•1
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Substitution of (13), (14), (17), and (18) Into (1) y Ields the
system

r ~ fl1 
+ -f1 (x ) a 

1e 
:
~ 

(x )  + 
1 (x )

(e 1

b2(x)B 2(x )R 2 (x )  I + 112111 
-

- i r I~~~~ ” [
~~ 

(x ) + e 2
(e -1)

(19)

sin p 11 x 
~ Li1 111 

+ - 1
- 

2~ii~~~ I [e •i (ti) ~ l (y)1 R1 (y)K 1 ,1 (x ,y)dy
(e 1 -l)ru °

b2(x ) sin p211 1 r + ~J2!II -
- 1 I~2 (x)+e 

~
1)
2 (x)J R2(y )K22 (x ,y)dy

( e -1)n X i..

b (x)~
’ .(x)R1 ( x ) I ~ — 1f2(x) = - ~~~~~~~ L: i (x ) + e :~ (x)j

(e 2 -1)

(20) + 
a2(:)~~(x) R2 (x)  

[e
Li2Ihl
,2

+ ( x )  +

b1 (x) sin ~~ 
1 r + ~i 1 t1i 1- 

~~~~~~~~ I 
~~ 

(y) + e 
~ 

(y)I R1 (y )K2 1 (x ,y)dy
(e 1 - J ) ui x .1 ‘

a 2(x) sin 1’2r1 x 
~ 

u2111 + 1- 2p2riT~~~~~ 
f f~ 2 (Y) + $2 (Y )j R 2(Y) K 1 2(x,y)dy
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It is straight forward to verify tha t solving the Abel system (1)

in the class ( 11) is equivalent to solving the generalized Rlemann

system (19) and (20) , i.e. to finding sectionally analytic functions

1,2 , satisfy ing (12) and the generalized boundary equations

(19) and (20).

The generalized Riemann problem (19) and (20) may be transformed,

In turn, Into an equivalent system of singular integra l equations

with Cauchy dominant singular part by a method outlined In Gakhov (2].

In particular , define

1 qi (t)dt
Yj z)=~~~~ 1~ (t-z)

and recall the PlemeIj fonmilas (43

÷ 1 1 1
(22) ~v~(x ) ± ~ ~ti~ (z) + 

~~~ ~~

Substitution of (21) into (19) and (20) yields a system of singular

integral equations , which in matrix notation becomes

(23) K°(,p) + k(*) = f

where q~ = (qi1 ,q,2)
T and f = (f 1,f2 )T 

. The dominant singular

part of (23), K°(qi) , is given by

— A (x)q,(x) + 8(x) 
~ 

j
1 

~~~ ,

where A (x) (a jj(x) ) B(x) a (b 1~ (x)) and

_ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— -- —

~~~~~~~~~~~. : : ~~~~~~

--- 
-

.

~~~~~
- . . . -
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a (x)& (x)R (x)

a11 (x ) =~1~ IJ flI 
1

2(e ~ +1)

b (x)~ (x)R (x)
a12 (x ) = ?__ 

U211i 
2

2(e ‘1)

b (x)~ (x)R (x)
a21 (x )  1 

~ 
1

2(e +1)

a (x )~ (x)R (x)
a22 (x ) 2 

p2ni 
2

2(e +1)

a (x)a (x)R (x)
b 11 (x ) 1 1 1

2(e -1)

-b (x)~ (x)R (x)b12 (x) 2 2 2

2(e -1)

—b 1 (x) 81 (x )R 1 (x)
b21 (x ) = 

p1 1112(e -1)

a (x)& (x)R (x)
b22 (x) 

2 
p2!!1 

2

2(e -1)

The operator k(iP) in (23 ) is easily seen to be compact. The theory

of systems of the type (23) is wel l known. (See , for example ,

Muskhelishvili (4).) In particular it is known that (23) Is equivalent

to a system of Fredholm equations of the second kind . In this sense we ~~~~~
may regard the above analysis as providing a solution of (1). although

-
~ — — —
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p
except for special cases, the solution is not Obtainable in closed form.

We remark further , that when p
2 , the dominant singular part of

(23), K°(gi ) , may be substantiall y simp 1i fl~ I. Important theoretical

lnfcrmation about (1) may be obtained from (23). However , we shall

postpone a consideration of this until Section 4 when an application

of (1) to dual relations Is discussed .

Section 4. Second Abel System.

We next consider the system (1) with p = 2 . The technique employed

for this case is in the same spirit as that of the previous section , with

only slight modifications made necessary by the substitution of the non-

univalent function z2 for z

As in Section 2, it is convenient to introduce certain notation .

Assumptions (2) and definitions (3) and (4) are unchanged . Whereas ,

lines (5) - (10) are replaced by:

2u~ A t
(24 ) ~1 (t) 

= 
~i
(t) 1 (1_t 2) 1

x ci (t 2)q (t)dt
= f I

(x -t )
(25)

= 1’ 81(t2)4 1 (t)dt

(t —x 2)~

(26) h1 (x) 

~: 
~~(t):t

(x2-t ~ 
1
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1 •1(t)dt(27) k 1 (x) a f
x (t 2_x 2 )~

i

1
(28) R1 (z ) a (z2-1)2 -

and

1 ~ (t)dt
(29) •1 (z) = 

R1(z) 
f 

2 ~‘i~ (z -t )

Instead of (11), we now seek solutions q 1(t) such that

-
(30) •1 (t)t = i_ P -c

(t(1-t)] ~

2 2 ~~iWhen a suitable branch Is chosen for (z -t ) / R 1 (z ) , we see from (30),

that •1(z) is analytic in the complex plane cut along [-1 ,1] and

satisfies

= 0(i) as z •~~~

(31)

and •1 (z) O((z 2~l)~~~ ) as z ± 1

Moreover, we may conclude that h1(0+) 
= k 1( l - )  = I~(.,)(O+)

= 0 and h1(l— ) , k1(0+), Ii ($i )(
l_ ) and Ki(,i)(O+) are

ill finite. ~~~~~~

=TL - 

~~~~— ~~—



12

The limits •~(x) are defined as before, only now they are computed

for - i < x < 1  . It is easy to show that when 0 < x c l

- Ii

(32) h 1 (x ) a [• j ( X ) + • (x)) -x

and
1

-p III p lii 
~ 

2~~ 
-

(33) k1 (x) a -(e ~ •~(x ) + e ~ • (x)] ~ —x ~
2 sIn p1

and when -1 < x < 0

(34) •~(x) a -

I
’ From (26) and (27) we obtain

sin p TI t h (y)dy
(35) •.(t) 2t f ~1 II 

° (t~-y
2) ~

sin p1 1 k’(y)dy
(36) = -  2tf ~

2 ~~l(y -t

Corresponding to (17) and (18) , substitution of (35) and (36) into

(25) yi*l ds

s i n p f l  x
(37) Ii(•i) h (x)&1 (x 2) - i f h 1 (y)yK 1 1(x,y)dy0

and

- 2 si n p 1fl 1
(38) K 1(,1) ki(x)P i(x ) + — f

x 
k 1 (y)yK2 1 (x ,y)dy

I
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where

(39) K1 1 (x ,y) = 2 f

and

1 B. (a(x2-y2)+y2)do
(40) K2 1 (x ,y) 2 f 1 

1
~ (1-a) a

Substitution of (37) and (38) Into (1) yields a Riemann boundary

system valid for 0 < x < 1 which in matrix notation becomes

(41) A (x ) ~~(x) + B(x) I (x) + K(4~) + H(~~ ) = f ( x )

where

o ( z )  = (s 1 (z ) , •2(z )) T

f(x) = (f 1(x )  , f2(x )) T

A( x ) = (a j j (x ) )  , B( x ) =~~~~~~) , K = (k 1~~) and H (h1~)

with

1a1 tx ;ct1~x ~ 2 r -

a11 (x) 2 sin ~ 11 (l-x )

- 

b2(x 2)82(x 2) 
1 2 ~ 

- ~a12 (x) - - 2 sin ~2R 
-x ) e

b1 (x 2)81 (x 2) 2 2 
- 11i -p1fl1

a21 (x) = - 2 sin —a— (l-x ) e ,

H

I - - -—~ 
_ _ _ _ _ _ _ _ _ _
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822 (x) = 

a2(:)c12(x) (1_x 2)2 
-

a1 (x 2) x 2 2 -k11 (~) 
a — f •~~~~1-~ ~ yK11 (x ,y)dy

211 0

b(x2) -wti l 1 
-~~~~~~~

= - 
2 -e ~ f ~(y)(1_y

2)2 Cyk 2 2 (x ,y)dy
21! x

b (x 2) -p h i 1 
~~~~~

- p
= - e 1 

~ •(
y)(l-y2) 1yK2 1(x ,y)dy

2n x

and

a ( x 2) x
k22(,) = - 

2 j ~y)(l-y
2) yK1 2(x,y)dy211 o

The kernel of the operator h 1~ Is conjugate to tha t of k1~

To establish the equivalence of (1) to a system of Riemann boundary

value problems it is necessary to extend the boundary equation (41) to

all of (-1,1) . However , from (34) and the fact that for 0 < x < 1

K(o~) + H(~~) is real it Is clear how the extension should be effected.

Specifically, if we define for -l < x < 0

a a1 (—x) ,

b1(x) = b1(-x)

a k
u
(,)(_x) 

~

&i(x) • - a1(-x)
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B i
(X) = - B i

(_X)

and

f1 (x ) = f~(— x )

then

A ( x )  = -

and

B(x) = - B(-x)

and (41 ) is valid for -1 < x < 1

By an argument entirely analogous to that of Section 2, the intro-

duction of q,1(t) through

1 1
•j

( Z )  = 
~~~~~~~ ‘~ (t-z)

transforms (1) to an equivalent system of singular Integral equations

with Cauchy dominant singular part. In the next section we consider an

application of (1) with p = 2 to certain simultaneous dual relations .

4. Simultaneous Dual Relations

In this section we consIder an applIcation of the analysis

presented in Section 3 to simultaneous dua l integral equations of the

form

~~~~~~~~~~~

$ .. .
.

. . . I J ’I~~.~ I$ ~ T I . I . . r .t... t~ ~ ri
- .- .. .-- . . 

.

- .
-

~~ 
. . ~~ 

T.
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f [ a 1A ( C ) + b1B(~ )] ~ J(E~x)d~ = F1 (x)

0 < x  < 1

f[a2A(~) + b2B(t)](
2
~J (E~x)dE = F2 (x)

(42)

J0A(~ )J~((x)d . 0

1 < x <~~~

= 0 ~

where a, b, c and d are constants. As was remarked In (3], such
systems arise in blmedia fracture problems in elasticity . It was

demonstrated in [3] that the system (42) may be transformed into the

system

a1 K~ ...~~~~
[n1] + b1 ~~~~~~~~~ 

= f1 (x)
2 0 < x < 1

(43)
a2! [rfl) + b2 K ~~~ 

f2(x)-8, A-v

where

A~~ ~~~~~ (a—B) ,

f1 (x ) 2~° I f1(~)(2ci x

f2(x) = 22~ 1 (F2(t)(
28; x l
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and and are unknown functions which vanish on (1,.’). The

operators appearing In (43) are the modIfied Erdelyi-Kober operators

introduced by Sneddon [5] and are defined as follows : if a > 0 then

I and K denote the fractional integra l operators

= x 2
~~~ (x 2 2 )a~

l
~
2n+l f(~)d~

x~~ f ( ~
2 x2 )ci_ l(2fl 2ci+lf(~ )d~;

whereas, if a < 0 , I and K are the fractional differentialn,a r~,a

operators inverse to I 
- 

and K respectively.fl+cz, ci

The system (43) may be regarded as a generalized Abel system.

As was Indicated in [3], only special cases of (43) fall within the

class of Abel systems considered in that paper and for which simply

closed form solutions are obtainable. In contrast , we show here that

the full problem (43) may be treated by the methods of Section 3.

Al though this approach does not provide, in general , closed form

solutions of (42), it does offer a means of obtaining useful theoretical

information regarding the questions of existence and uniqueness.

Moreover, the system (42) is ultimately reduced to a system of
Fredhoim equations of the second kind.

Two observations regarding the general character of the system (43)

may be made ininediately. The first is that both fractional integral and

differential operators appear In (43). In particular , the four operators

— 1~~~ 
— -— —4.-.- 

—
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consist of two fractional integrals and theIr Inverses. The second

observation is that only when a = B does it occur that the unknown

func tions , , appear in operators of the same order, i.e. in

(43) the two integral operators have the same order and thus also their

Inverses. As will become apparent later, this greatly affects the

tractibility of (43).

Without loss of generality we may assume v > p . Al so, for

simplicity we shall first assume that ~ 
= ~ and v - p < 2

which stil l includes all the physically interesting cases. later, we

shall indicate the necessary adjustments in the analysis to be made

when these assumptions are relaxed .

Given these restrictions , equations (43) become

(44) a1 K~ ~~~~~~~~~~~ 
j [

~2
j = f1 (x)

0 <x <1

a2 I~ ~ 
+ b2 K ii-v~~2~ 

12(x)

~~

Introduction of

= t2° 1
1)
1
(t)  , p1 1-(v-p)/2 , cz1 (t) = ~

v1 
= (I.rsv)/2 - a and 81( t )  =

yields, in the notat ion of Section 3, ;
(45) K~ ~~ [n 1 J 

= ‘( ( v uJ J2J K1(~1)



19

and

(46) I~ y ~~~ 
= 

r(�
~?)

It should be noted tha t and 81 , defined by (4), are now only

power functions and that one of them is identically one. Moreover, the

kernel s K1 1  and K2 1 in (37) and (38) are easily seen to be given

by

0 v1 < O
(47) sin p111 . . . . 

-

,, K1 .1.1~ ,yj..= ~~. .

2(~v~— 1) 2 2
2v1(l-p 1 )x 2F1 (1~v1,2_p1 ;2;X ~ ‘0 ,

and . 
-.; .

-2(v +1 ) 2 2
-2v1(l-~i1 )y 

1 
2F1 (l+v1,p1 ;2;~

’ 
~ ) 0 < x <

(48) sIn p111 y

~ 
K2,1 (x y) = < 0

0 V
1 ~ O , 0 < y < x

Since solutions are sought for which the operators in (44) yield

continuous funct ions,it follows that t”~2
(t) must vanIsh for x a 0

and x • 1 . Hence we deduce that

(49) I
~ , ~~~ 

= r(l_ (v:ji~72~ ~: 
x 2_t 2

~~~ ~~ (t”~2( t) ]dt

and

—

~

--——- - - . —
~~

---—-
___  .-~ — —~-
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(50 ) K
~ p-v~~2’ (l~~~~~/2J I (t~-x~)~~~ ~~ [t~~~n2(t)]dt .

X

DefIne - a . If • 0 we define

~~ [t’~r~ (t)] , a2(t) = 1 , B2(t) = 1 and p2 •

and observe that

(51) 
, ~~~~~ 

= r(l:p2) 
‘2~~2~

and

v-2a
(52) K,~, 

- 

= 
. r ( i -u~) K2 (~ 2 )

where 12($2) and K2(~2) are given by (25).

If ~ 0 , we define a2(t) = t
”2 and

- 2v2d r V
~jL t fl2 t

and note that

- 2v
t2a-~4)2(t) = t 2t”ri~(t) .

LIne (51) is still valid but (52) must be amended . From the obvious

identity
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-2v -1
~~ [t~°~’r~2(t)) = •2(t) - 2v2 ~ 

2 [t”n2( t)]

we obta in

v-
(53) K

~ ,
~~~ ~~~ 

a 

~~~~~~~~~~~~~~~ 

K
2

(4 ~
2

)

v2 [t~~~( t)]
- 2v2 J

~ (~2~~2)~~ 
t

Moreover , it is straight forward to show that

(54) t T)2(t) = 

-sin 
~~ ~~2 t2 ~ 2yk2(y)dy

~ (y -t)

+ f 2yk 2 (y)dy

We must now consider separately the two cases v2 > 0 and

< 0 . For v2 > 0 substitution of (54) into (53) yields

v-2a
(55) K~ - a ~~ [n 2] =  F( i-p2 ) K2(~2)

- J K2 
(v )  K312 

(x ,y)dy

where

r ~~~~~
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I
2v 2p -l2 2 p-2~t(56) K32 (x ,y) = 

~~~~~~~~~~~~~~~~ 

y x

2 sIn 1121! v2
2 

~-2~ 2 2
~ n r (2_ p 2) x (y -x )

.~~
1 [x2+t(y2-x2 ) 12

2F (1+v , 1; 2-p2; 
t~y

2-x2)

~~ ~~~~~~~~~~~~~~~~~~ ~2 
Ex t)+iy )

It should be noted that x~’ K32 (x ,y) c (0,l ) x ( 0,l) and is continuous

for 0 < x < y < 1

If v2 < 0 we obtain

(57) 
-

~~~ ~~~~~~ ~~~ 
= r :r 

K2(~2)

1
-f k2(y )K4 2 ’ -~

’
~~”x

with

v-2a
(58) K4 2 (x ,y) = r 1 _ u2 

;v2 
2F1(1+V 2,P2;1;

Y
2
~
X2 )

Moreover, we have x”K42(x,y) c 1
1(0,1)x ( 0,1) and continuous for

0 < x < y < 1 . The express ions 
~~~~ 

and K2(~2) appearing In

(51), (52), (55), and (57) are given by (37) and (38) with

t
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0 v2 < 0 , 0 < x - y < l

K1 2 (x ,y)

~ 
2(~~-l) F ( 1v 2  2 X~~ ~ > 0

0 < y < x < l

and

0 v2 > O  , 0 < y < x < l

K2 2 (x ,y) a

-2v2(l_p2 ) II 
;
2(v~+1) 

2F1(1+v21p2;2;~
’
2
~~
2 

) < 0

0 < x < y c l

The subsequent observations are valid for all values of

However , for definiteness we assume v~ > 0 . Substitution of (37) and

(38) into (45), (46), (51) and (55) and from there into (44) yields a

generalized Riemann system of the type

(59) A(x) •~(x)  + B( x ) ~~ x) + K(.~,s) = f(x) 0 < x < 1

Boundary equation (59) is then extended to all of (-1 ,1) by the method

of Section 3. Al ternatively, (59) may be transformed into the system of

singular integral equations

1
(60) S(x) gi(x) + 1(x) l

~
- 

~ 
flt)~t 

+ R(1j1 ) = f(x) -1 c x  c l
-l ‘~1
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‘4
by introduc i ng

1 1 
~(t)dt

~�irr 1 1 tt-z)

In (60)

S( x ) A(x) - B(x)

and

- 
A(x) + B(x)T~x , - 2

and K(i~) is a Fredhoim operator. Examination of the dominant singular

part of (60), or equivalently the princ ipa l part of (59), yields Important

theoretical information about (44). For examp le , the number of solutions

of (59) (and henre of (44)) is  at least as large as the number of solutions

of the dominant homogeneous singular equation

(61) S(x) ~(x) + 1(x ) 
~~ ~ 

~~Jj~t = o

or its corresponding Riemann problem

(62) A(X) ~t~(x) + 8(x) ~~ x ) = 0

Examination of (61) or (62) will thus provide conditions necessary for the

existence of a unique solution to the dua l relations (42). It therefore

becomes necessary to compute the index of the system (62), which from the
general theory of Muskhe lishvj1j [4], is most easily determined by actually

solving (62). ThIs can be accomplished by transfo rming (62) in the usual
way [4] to a system of Fredholm equations of the second kind and then

iteratively constructing the solutions . However, in certa in

— 
. -‘_ ..—.. — 

— — —
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I. -

cases the technique presented In [3] for uncoupling systems of the type (60)

into two ordinary uncoupled Riemann problems will provide simple closed

form solutions. To decide the applicability of the method of [3] to (62)

we must examine more closely the matrices A(x) and B(x), the components
of which are given by A(x) = (aij( x ) )  , B(x) = A (x) , A(-x) -A(x)

and on 0 < x < 1

2v2-v 2 1/2-Pi r ( 111 ) -p~ni
a11 (x) = -a1 x [l—x ) e

2v2-p 2 l/2P2 r (~~)
a12(x) a b1 x [l-x ) —

~~~~
--

2v2-p 2 1/2_ pi ~~~a21 (x) a a2 x [l-x ]

2v2-p 2 ~~~~ 
r (~2 ) -~~ni

a22(x) = b2 x [1-x ] 211 
- e

The first restriction to be placed on A(x) is that det(A)(x) $ 0

(except perhaps for x = 0 , ± 1 ). Hence it is assumed that

-111 (111+p2)(63) a1 b2 e + a2b1 $ 0

Recalling that p1 + p2 = 1 , we see that (63) is equivalent to

(64) ~~~a1 b2 - a 2 b1 $ 0 .

It follows that when (64) holds , the system (62) is equivalent to

(65) •~(x) • - 
~~
. G(x ) 

~ (x ) ,

- -  I~~ L
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p
where G(x) A~~(x) AtXT • (91j(x )) , G(-x) a 

~~~ and on (0,1)

g11 (x ) a~b1 + a1b2 e

2 l
~i~~2 

r ( p2)
b1 b2 x

’~~[1—x ] I sin 
~~

2 ~2~~l 
r(p 

~g21(*) 
= -a1 a2 x

11 ’
~[1—x ] i’(p ) 4 1 sin p111

a g11(x)

Uncoupling (65) requires finding a matrix P(z) analytic in the

plane cut along (-1 ,1) and such that

P(x) G(x) P~
1
(x) = 0(x ) -l < x < 1

where D(x) is diagonal . As was shown in [3] , P(x) must be of

the form

/ 
g12(x) —/g12(x) g21 (x)

P(x) = c(x ) (
“ 1g12(x) g21Tx)

where c(x) is a scalar function. Since

1g12(x)g21(x) = 2/sin p1fl sin 11211 a1a2b1b2 ,

the matrix P(x) has an analytic extension to the cut plane if and

only if xPv [l_x 2)2 ‘~ has no branch point at infinity . Recalling
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that - 

~2 
= 1 - (v-p) and 0 < v-p < 2 we conclude that (65) can

be uncoupled If and only if v-p a 1 . This condition Is satisfied

by the systems arising in applications to biniedia crack problems in

elasticity [1]. When the restriction 0 < v-p < 2 is withdrawn , it

becomes apparent that (65) uncouples whenever v-p is an odd Integer.

When v-p is an even integer , the original system (43) was shown in

[3] to reduce to a single linear ordinary differential equation. Hence,

it is apparent that (43), is much more easily analysed when v-p is an

integer than it is otherwise. Moreover, a simple closed form solution

is obta i ned whenever v1 
= = 0 . It now is a simple matter to compute

the indices of the two uncoupled Riemann problems and obtain conditions

for the solvability of (44). In particular , the indices provide necessary

conditions for uniqueness to hold for the dual relations (42).

It remains to consider how removing the ;es trictions 0 < v—p < 2

and a = ~ affects the analysis of (44). Maintaining a = B but

allowing v-p to be any positive number does not affect the general

character of (44) and requi res only minor alterations in the analysis

presented above. Since the calculations involved are rather tedius

we shall dispense with a detailed analysis of this case. However,

if a $ B the behavior of (43) is substantially different from that

of (44). To illustrate the difference we shall consider (43) with

a > 8 , and for simplicity we assume 0 v-p . 2 . Note that in

thi s case v - A 0 , and we may define n to be the least positive

integer greater than v - A , I.e. n-i < v-A n . To avoid a case

argument we shall assume n-i < v-A < n and n > 2
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The following identity is easily verified

K ~ 
= 

Qi 212 
f (t2-x2)~~~

1tdt
- a,v-A ~ r (~j~)r (a-B) x

J (y2 t2)7~ ~2B v+l 
n1 (y)dy

Therefore, if we define v1 
= - B 

~ 
(t) t 1 

~ 
(t) — 1

= 1 - and •1(t) = ~1(t) t
2
~~”~

1 we obtain

(66) r( 1-~.~J ~~~~

and

(67) 
- cs,v—A 1 r ( 1-p~)r(à-B) I (t 2_X 2)a— B— l t

where I i (4
~i

) and K1(~1) are defined as In (25).

Moreover, it Is straight forward to show that

(68) K~ 
- 8,A-v 2 V~A2+n) 

~.28 j (t2_X 2)
A_
~
1n_ l

tD~[t
2a_P

fl2(t)]dt 

/ 

*

and

(69) ‘v 1~~
(fl2) r(~~~ +i) ~ 

(x2_t 2 )~~~ t’ “1Dt(t~
’2B2(t) ]dt

5,— 
-.- — — 

~9
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where D
~ 

(
~ ~

) . Now l~t •2(t)  = t D~[t
2
~~ n2(t)] , a~( t) 1

a2(t) a 
~ and = 1 - n + v - A , and let K2(~2) and 12($2)

be as in (25). We then have from (68)

(70) K 
~ 

) - 
2(_linx~

1_28 
K (- B,A-v ‘~2 rfI-p2) 2

and after some manipulation (69) becomes

(71) 
, ~~~~ r(~

’
~ )rL1);(v- AJ 1~ 

y12(~2)dy 1 (X2_~)~
r (t 2-y2)”~~~

x x
+ I~( l -p 2 )1’(p 1)r (v- A- l) ~ yI~(~~)dy f ( x 2-t2 ) (t2-y2)”~

’2

= ‘~ 
I2(~2)K21 (x,y)dy

where
IA  v-2ci-4, 2 2~ci-B- l

K (x ~ ~
.,) fX  ~X 

~Y2,1 ‘ ‘ r (l-~~)r ( a— 8)

~~~~~~~~~~~~~~~~ 

x2(x 2-y2) 2F1~~ 
(~~v) 

, 1 - 

~-~
j1-

~ 
;(~-B)+1; (x~j v2)

+ - 1 , 1 - 
(v-p) ; (a-B) )
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Once again a generalized Riemann boundary value problem equivalent

to (42) is obtained by substituting (32), (33), (37), and (38) Into (43).

However , In this case the resulting system has a singular (or degenerate)
principa l part. In particular , the system has the form

A(x) •‘~(x) + B (x) ~~ x) + k(~~,4~ ) = F (x)

with A(x) • (a jj(x))  8(x ) = AlIT a 11 (x ) = a 12 (x ) = 0

2 2 l/2-pia21 (x) a2x ”&1(x )(1-x ) / (r ( l -p 1) sin p1n) and
+1 2 p211’ 2 1/2-v2a22 (x ) = b2(-l)~ x’~ 

Be (1-x ) /(r(l_p2) sin ii2fl) . It is now

apparent that A(x) and B(x) are not i nvertible and the methods of this

section do not effect a simplification of (43), or hence of (42). Evidently,

the behavior of (42) Is substantially different for a = B and a $ B

This is due to the fact that when a $ B , the function in (43) appears

in operators of different order, as does . For a B this does

not occur. That this is important is easily illustrated by considering

a single generalized Abel equation of the type

(72) a(x ) 
X •(tjdt + b (x) j1 •(t)dt f (x )  0 < x < 1
o (x-t) 1 X (t—x) 2

Applying the methods of this paper to (72) shows that (72) is equivalent to

the singular Integral equation

A(x) y(x) + B (x) f J ~(t~dt + k(~ ) = F(x)

If • p2 
• p then

t3~ .•
~~~
;,
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A(x)  a 
~ tan ~

p (a(x)+b(x))

B(x) = (a(x)  - b (x ) )

and

k(*)~~~~~~ O .

However, if $ 
~‘2 

say p~ , then

A(x) a 
~ tan ( 

~ ~~ 
a (x )

B (x) = a(x)

and

The integrals in (72) correspond to fractional integral operators of

order 1 - p
1 an d 1 - p

2 
respectively. Thus, if the orders of the

operators in (72) are the same the essential structure of the equation

Is governed by the functions a(x) + b(x) and a(x) - b(x) ; whereas

when the orders are different, the fundamental properties of (72) are
determined only by the coefficient of the operator of lowest order.
This is analogous to the characteristic behavior of a differential

equation being determined by the coefficients of the terms of highest

order.

— -
~~~~~~~~~~~ -~~~~~ -~~— --- ~~~~~~~~~~~~~~~~~~~~~~~
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